bandeau 3

LISTE DES ARTICLES PUBLIES (les articles sont affichés après la liste)

document au format PDF icone pdf

 Les trous noirs

par Pierre Laharrague

« De toutes les conceptions de l’Esprit humain, la plus fantastique, peut-être,
est le trou noir, un trou de l’espace dans lequel n’importe quoi peut tomber et
duquel rien ne peut s’échapper».
Kip S. Thornenoirs



                                                        

Le terme « trou noir » a été inventé en 1969 par le physicien américain John Archibald Wheeler de Princeton University pour désigner de façon imagée un objet céleste tellement compact, c'est-à-dire dont la masse est tellement concentrée, que  la lumière ne peut s’en échapper et qu’il n’est donc pas observable. L’idée que de tels objets pouvaient exister ne provenait donc que de considérations purement théoriques. Mais des observations indirectes réalisées depuis, ont permis de valider la pertinence de ce concept.

 

Qu’est ce qu’un trou noir ?

1- Historiquement, c’est un professeur de Cambridge, John Michell, qui écrivit en 1783 un  article dans le Philosophical Transactions of the Royal Society of London dans lequel il  mentionnait qu’une étoile suffisamment massive et  dense devait posséder un champ gravitationnel (sur la Terre, nous parlons plus communément de gravité ou de pesanteur) tel, qu’aucune particule, et en particulier, la lumière que l’on assimilait à des corpuscules ( les photons), ne pouvait s’en extraire.

13 ans plus tard, le Français Pierre Simon de Laplace fit la même prédiction dans son livre Le Système du Monde sans citer toutefois le travail précédent de Mitchell. Imaginons qu’on tire verticalement un boulet de canon. Son ascension sera freinée par la gravité et il finira par retomber. Mais si la vitesse initiale est plus grande qu’une valeur critique dite vitesse d’ « échappement »  ou  de « libération », il filera vers l’espace. La vitesse  de libération est d’environ 11 km/s pour la Terre et  de 100 km/s pour le Soleil. Ces vitesses sont très supérieures à la vitesse que peut atteindre un boulet mais très inférieures à la vitesse de la lumière qui vaut  300 000 km/s.

     Michell suggéra que des étoiles beaucoup plus massives que le soleil pourraient avoir des vitesses de libération supérieures à la vitesse de la lumière de sorte  que leur champ gravitationnel retiendrait celle-ci et qu’on ne pourrait donc les voir. Il appela ces étoiles des « étoiles sombres », on dit aujourd’hui des trous noirs.

Mais  il y avait  un  problème : c’est que les particules de lumière, à l’instar  du boulet  de canon, étaient  régies  par  la mécanique newtonienne : alors que la vitesse du boulet varie tout au long de sa trajectoire pour devenir nulle à l’impact sur le sol, la vitesse  de la lumière est constante et le photon poursuit son chemin toujours à la même vitesse. Aucune réponse ne fût apportée à cette question avant l’avènement de la théorie de la relativité généralisée en 1915.

2. Venons-en à la version contemporaine de la formation d’un trou noir. Ces considérations sont le fruit des travaux d’éminents physiciens parmi lesquels : Carter, Chandrasekhar,  Einstein, Hawking, Israël, Kerr, Kip Thorne, Oppenheimer, Penrose, Wheeler, Zel’dovich et d’autres…

A : Étoile normale

Considérons une étoile dont on suivra l’évolution à l’aide du schéma ci-dessous dans lequel on n’utilise, pour simplifier, qu’une seule coordonnée d’espace. On sait que l’étoile trouve son énergie dans le processus de fusion thermonucléaire de noyaux d’hydrogène comme cela est réalisé dans une bombe H.

La fraction de cette énergie qui n’est pas rayonnée se trouve sous forme de chaleur au sein de l’étoile et cette chaleur produit une pression thermique centrifuge qui s’oppose à la force gravitationnelle centripète qui  contracte  l’étoile.  Un  équilibre   apparait   et   l’étoile   reste   stable  tant  qu’il  y a  du

du combustible  à consommer (schéma A).  Notre soleil se trouve dans cette phase qui se maintiendra pendant encore 5 milliards d’années.

Mais lorsque le combustible est épuisé, l’étoile se refroidit et la contraction reprend le dessus. Son destin dépendra de sa masse :

¨ en dessous de 1,4 masse solaire, elle deviendra une naine blanche affichant une densité de plusieurs dizaines de tonnes par cm3. On appelle cette valeur, limite de Chandrasekhar, du nom d’un jeune étudiant indien de 19 ans qui la formulât en 1930. Pour  l’anecdote, c’est au cours du voyage vers l’Angleterre où il se rendait pour poursuivre ses études à l’Université de Cambridge, que Subrahmanyan Chandrasekhar profita  des 18 jours de mer pour réfléchir au sort des étoiles massives et énonça sa loi. Un  voyage particulièrement fertile puisqu’il sera lauréat du Nobel 53 ans plus tard.

La contre-pression permettant à la naine blanche de se stabiliser n’est plus la pression thermique devenue insuffisante, mais une nouvelle forme, appelée pression de dégénérescence électronique, qui est d’origine quantique : cela provient du fait qu’il existe un principe dit principe d’exclusion de Pauli, selon lequel il est impossible que 2 particules coexistent dans des états identiques ; il en résulte que 2 électrons ne peuvent avoir à la fois la même position et la même vitesse, ce qui les éloignera l’un de l’autre , engendrant la contre-pression mentionnée ; cette répulsion est toutefois limitée par le fait que la théorie de la relativité impose que la différence des vitesses ne dépasse pas celle de la lumière. ¨  entre  1,4 et 3 masses solaires, la pression électronique n’est plus suffisante pour contrebalancer la contraction gravitationnelle. Protons (les noyaux d’hydrogène) et électrons viennent quasiment au contact pour former des neutrons. L’étoile devient une étoile à neutrons, soutenue par une pression de dégénérescence neutronique homologue de la pression électronique précédente. Son rayon est d’une dizaine de km et la densité  de plusieurs millions de tonnes/cm3.

¨ au-delà de 3 masses solaires, aucune pression ne peut s’opposer à l’action de la gravité. Celle-ci poursuit inexorablement son action, aboutissant à l’effondrement de l’astre, ce qu’on appelle l’effondrement gravitationnel.  

  

Chandrasekhar [1910-1995] en 1934 

B : Vue en 1 dimension

C : Vue en 2 dimensions

 

Du fait que la gravité devient de plus en plus forte, l’espace,  à son voisinage, se courbe de plus en plus ainsi  que le prédit la relativité généralisée ; il en résulte que les trajectoires des rayons lumineux qu’on appelle aussi des géodésiques ( c’est l’arc de courbe le plus court entre 2 points), s’incurvent  de plus en plus vers la surface de l’astre et à la limite, ne peuvent plus le quitter. Dans le schéma B, à 1 dimension d’espace, ceci correspond aux rayons parallèles à l’axe du temps, qui restent à distance constante du centre de l’étoile. On a obtenu un trou noir.

La  surface  limite  que  nous venons de mettre en évidence, constitue, ce  qu’on  appelle  l’horizon des événements  car  on ne peut rien percevoir de ce qui se passe en dedans. Il n’y a aucune raison toutefois pour que la contraction s’arrête : elle se  poursuit donc jusqu’à  ce que la matière soit théoriquement concentrée  en  un   point,  c'est-à-dire  que  la  densité  y  devienne « infinie ». On a alors affaire à ce qu’on nomme une singularité  où la physique actuelle n’a plus de sens.

Les propriétés des trous noirs

Quelques mots d’histoire 

Les travaux sur les trous noirs connurent une forte accélération après la 2ème guerre mondiale du fait que de nombreux physiciens qui étaient engagés dans les programmes d’armes nucléaires des grandes puissances, se réorientèrent, dès lors que pour l’essentiel, les problèmes de physique et de technologie correspondants avaient été résolus. Beaucoup optèrent pour l’astrophysique car les outils développés pour les programmes militaires, étaient adaptés à l’étude de l’implosion des étoiles.

D’éminents théoriciens comme l’Américain John Archibald Wheeler et le Soviétique Yakov Borisovich Zel’dovich qui avaient été des acteurs importants des travaux de mise au point des engins thermonucléaires dans leurs pays respectifs, constituèrent autour d’eux des équipes de jeunes scientifiques prometteurs, très motivés par les nouveaux challenges à résoudre. Ainsi se prépara un véritable âge d’or concernant les recherches sur les trous noirs qui s’étala en gros de mi 60 à mi 70.

Cette intense activité trouva une conclusion sous la forme d’un traité que Chandrasekhar publia en 1983 sous le titre « La théorie mathématique des trous noirs » qui constitue toujours la bible des chercheurs.  

1. La taille de l’horizon: Rayon de Schwarzschild

Karl Schwarzschild (1873-1916)

 

En 1916, Karl Schwartzchild  servait dans l’Armée  allemande sur le front russe. Il venait de lire la publication d’Einstein sur la Relativité généralisée, parue en Novembre 1915. Il chercha aussitôt à découvrir les conséquences de cette théorie sur les étoiles et, pour ce faire, entreprit d’en résoudre les équations, ce qu’il parvint à faire en prenant un cas  idéalisé d’un étoile  parfaitement sphérique et ne tournant pas sur elle-même. Il envoya un manuscrit à Einstein qui le présenta, en son nom, à l’Académie des Sciences de Prusse en Janvier 1916. Son calcul, très élégant, prédisait  que pour chaque étoile, il existait une circonférence critique, dépendant de sa masse,  au voisinage de  laquelle le temps ralentissait de plus en plus, provoquant un décalage de plus en plus grand vers le Rouge de la lumière émise (on appelle cela le «redshift gravitationnel»).Sur la surface, le temps se « figeait », de sorte qu’aucune  onde de lumière ne sortait. Ainsi, retrouvait-il les idées émises deux  siècles plus tôt par Michell et Laplace, mais avec une interprétation différente.

Cette surface critique n’est autre que l’horizon des événements mentionné plus haut qui s’exprime par la formule :

   R(km) = 3M/Msol

La masse M étant rapportée à la masse du  soleil Msol selon une habitude des astrophysiciens.

Par ex : - si le soleil devenait un trou noir (ce qui ne sera pas le cas puisqu’ il finira en naine blanche), son horizon aurait un rayon de 3 km.                                                                                                                                                                    

- pour 3 fois la masse solaire, le rayon est de 9 km, ce qui correspond à une densité de 1 milliard de tonnes /cm!

 Malheureusement, Schwarzschild ne put poursuivre ce travail si prometteur, car il décédait quelques mois plus tard d’une maladie contactée sur le front.

 

 

2. Les trous noirs « n’ont pas de cheveux »

 

Étoile magnétisé           Étoile carrée         Étoile avec montagne

          Même trou noir

Cette expression est  due également à J.A.Wheeler. Elle  indique  de façon  imagée  que  lorsqu’une  étoile  devient            

un   trou  noir, ce  dernier ne peut rien révéler de l’étoile  génitrice. C’est ce qu’illustre le schéma ci-contre où l’on a         

un peu forcé le  trait afin d’être plus explicite.

Les seules grandeurs caractéristiques des trous noirs   (ses seuls cheveux) sont :                                                          

sa masse ;

son mouvement de rotation sur lui même ;

 ● sa charge électrique éventuelle.

Un comportement aussi surprenant, comme bien d’autres aspects concernant les trous noirs, a mis du temps pour  émerger et être admis par la communauté scientifique. C’est V.L.Ginzburg de l’équipe Zel’dovich qui, le premier, proposa cette conjecture en 1962  dont W.Israel qui, lui, dirigeait un un groupe de recherches au Canada, apporta une première preuve en 1967. Mais il fallut néanmoins attendre 1970-71 pour que Brandon Carter et Stéphan Hawking de Cambridge apportent la preuve définitive du théorème de la « calvitie ».

       

Vitaly L.Ginzburg en 1962  Werner Israel en 1964

3. Les trous noirs « sont gris »

 

Comportement des particules prés de l’horizon

Stephan Hawking en 2001 

 

Cette expression, imagée comme la précédente, signifie que les trous noirs peuvent rayonner de l’énergie autour d’eux. Une telle suggestion a été faite pour la première fois par Y.B.Zel’dovich en 1971, lequel soutenait aussi que la perte d’énergie ralentirait la rotation du trou noir qui ne rayonnerait plus dès qu’il serait devenu immobile. Mais elle fut jugée impossible par la communauté scientifique puisque rien ne pouvait sortir d’un trou noir.

Stephan Hawking est professeur lucasien à Cambridge où il est titulaire de la chaire qu’occupait Isaac Newton au XVII ème siècle. Il est atteint d’une maladie touchant son système nerveux et musculaire qui le contraint au fauteuil roulant. C’est un éminent astrophysicien et cosmologiste. Lors d’un voyage à Moscou en 1973, il rencontra Zel’dovich avec qui il discuta de son idée qui l’intriguait. Mais il était sceptique sur le traitement mathématique utilisé par le Soviétique,  de sorte que, revenu à Cambridge, il s’attaqua au  développement de sa propre méthode. Et en 1974, il fit une annonce stupéfiante, à savoir que les trous noirs, qu’ils tournent ou ne tournent pas, rayonnent, et tout comme un radiateur  qui dégage de la chaleur, ils possèdent aussi une température qui est inversement proportionnelle à

leur masse. La perte d’énergie entraine une perte de masse, donc un accroissement de la température, donc une augmentation de l’énergie rayonnée, donc une nouvelle perte de masse etc.., de sorte que le trou finit par s’évaporer.

L’explication  fait  appel à la mécanique quantique : celle-ci prédit que même dans le vide, des particules  identiques  mais  de  charge  opposée   peuvent  naître   spontanément ;  elles  s’annihilent

presqu’aussitôt en restituant l’énergie qu’elles ont empruntée aux régions voisines de sorte qu’en moyenne l’énergie reste nulle – ces particules sont dites virtuelles car elles ne sont pas observables directement, elles sont la manifestation de ce qu’on appelle des fluctuations du vide – En présence d’un trou noir, il est possible qu’un membre seulement d’une paire tombe dans le trou alors que l’autre s’échappe à l’infini , produisant le rayonnement cité ( voir figure ci-dessus).

Il convient toutefois d’avoir quelques chiffres présents à l’esprit : un trou noir de quelques masses solaires aura une température  de 1 millionième de °K de sorte qu’il s’évaporera très lentement, à peu prés 10 67 ans, soit infiniment plus de temps que n’a mis l’Univers de l’origine à nos jours (1010 ans).

Autant dire qu’en astrophysique, le phénomène d’évaporation n’a aucune influence. Néanmoins, dans la fournaise du Big Bang, il est possible que des trous noirs beaucoup plus petits aient été produits,  (on  les appelle pour cette raison des trous noirs primordiaux) qui auraient  eu le temps de s’évaporer, mais on  n’en a  pas encore trouvé de traces sûres.

4. À l’intérieur  de l’horizon

Roger Penrose

La première réponse à la question de savoir ce qu’il y a à l’intérieur d’un trou noir, est contenue dans les calculs que firent Robert Oppenheimer et son élève Hartland Snyder en 1939 mais qu’ils s’abstinrent de commenter. Peut être craignirent ils que l’idée d’une singularité, implicite dans leur solution,  n’en rajoute  à la controverse sur  leur prédiction  qu’une « étoile en fin d’implosion  se retranche du reste de l’Univers ». Les physiciens étant en  effet toujours très réservés vis-à-vis des infinis, la communauté scientifique se divisa en deux groupes, l’un conduit par J.Wheeler pensait que la théorie utilisée par Oppenheimer (la relativité généralisée) n’était pas valable aux densités extrêmes de la singularité et qu’il fallait la marier à la mécanique quantique, l’autre mené par les soviétiques Isaac Khalanitkov et Evgeny Lifshitz contestait le modèle de trou noir utilisé par l’Américain et  affirmaient  qu’une singularité était mathématiquement  impossible.

En 1964, Roger Penrose, mathématicien  et physicien anglais diplômé de Cambridge et doué d’un immense talent, révolutionna les outils mathématiques utilisés jusque-là, ce qui lui permit d’énoncer et de démontrer en collaboration avec Hawking, un théorème décisif, à savoir «  que si une étoile implose et devient un trou noir, elle renferme inévitablement une singularité à l’intérieur d’elle-même ».  Ce théorème mit un terme au désaccord et les soviétiques se rangèrent  à l’avis de l’Anglais.

En outre, Penrose  fit une autre proposition sans pouvoir toutefois  la démontrer, qu’on appelle  la conjecture de la « censure cosmique ». Selon celle-ci,  aucun objet qui implose ne peut créer une singularité nue. En d’autres termes, les singularités créées lors d’un effondrement gravitationnel, ne se produisent que dans des endroits comme les trous noirs où l’horizon des événements les dissimule au monde extérieur sur lequel, donc, elles n’ont aucune influence. En  paraphrasant, Hawking dira  « Dieu déteste les singularités nues ».

Que dire de la singularité ? On a vu que la densité et la courbure de l’espace y devenaient « infinies », c’est-à-dire que ce point marque la fin de l’espace et du temps et qu’au delà de cette limite,  la théorie devient inopérante : la matière engloutie dans le trou est anéantie et l’information détruite lorsqu’elle atteint la singularité. Même si nous disposons de quelques détails les concernant, nous ne savons pas encore comment penser ces singularités où les effets quantiques sont prédominants. C’est tout l’enjeu des recherches actuelles qui tentent de marier la mécanique quantique et la relativité.

5. Trou noir et information

À peine avait il publié ses résultats  que S. Hawking  réalisa que ses conclusions posaient une véritable énigme. Si une étoile disparaît dans un trou noir et  que le trou noir disparaît à son tour par évaporation, qu’advient-il de ce qui, à l’origine, constituait les caractéristiques de  l’étoile ? Hawking prenait le parti d’admettre que cette information était détruite, emportée par la singularité disparaissant de l’Univers.

Plusieurs physiciens dont John Preskill (Caltech), Léonard Susskind (Stanford), Gerard Hooft (Utrecht), étaient en désaccord avec ce point de vue, arguant que la mécanique quantique établit de façon catégorique que l’information ne peut être perdue. Des calculs tout récents semblent leur donner raison, encore qu’ils n’aient pas une portée générale. En 2004, Hawking s’est rangé à leur avis.

À la recherche de trous noirs

Bien qu’étant invisibles, les trous noirs exercent autour d’eux une action extrêmement puissante en raison de leur énorme champ gravitationnel. La stratégie de recherche consistera donc à déceler et mesurer les effets de cette action dans l’environnement d’un éventuel trou noir. Quels peuvent être ces effets ?

w considérons ce qu’on appelle un « système binaire », c'est-à-dire un ensemble de deux corps en  orbite l’un autour de l’autre. On sait qu’il existe beaucoup de ces systèmes, l’un des corps peut être un trou  noir  (si sa masse est supérieure à 3 masses solaires), l’autre, une  étoile  lumineuse.

 

Vue d’artiste d’un système binaire avec trou noir


L’attraction gravitationnelle  du trou  aspire  la matière du  compagnon qui tombe en spiralant vers l’horizon en formant un disque d’accrétion. La vitesse augmente de plus en plus jusqu’à devenir proche de celle de la lumière, la température s’accroit à cause du frottement, entrainant l’émission de rayons X par la région centrale  du disque, rayons qui sont détectés par des appareils embarqués sur satellites.

Le premier système de ce genre a été détecté en 1962 et  a été baptisé Cygnus X 1. Les mesures, de plus en plus précises faites depuis, montrent qu’il est constitué d’une étoile super géante de 20  à  30  masses  solaires  orbitant  autour d’un trou noir de 7 à 13 masses solaires, situé dans la constellation du Cygne à environ 8000 années-lumière de nous. C’est l’archétype de trou noir stellaire.

 

- imaginons dans une toute autre échelle un trou noir de plusieurs millions de masses solaires. On sait maintenant que ce type de trou noir, dit super massif, constitue le moteur qui fournit l’énorme énergie rayonnée par ce qu’on appelle les radios galaxies et par les quasars : comme précédemment,  la  matière est avalée via un disque d’accrétion, mais en  outre, de puissants jets sont émis perpendiculairement au disque sur distances considérables.

 

Quasar

 

image15Radio galaxie CENTAURUS A à différentes longueurs d’onde


  - dans le cas d’une radiogalaxie, ces jets de matière s’étalent sur plusieurs centaines de milliers d’années lumière et alimentent 2 lobes qui émettent en  bande radio : ci-dessus, images  de la radio galaxie, la plus proche (13 millions d’années lumière) dans la constellation du Centaure, montrant nettement ces jets. La masse du trou noir est évaluée à 200 millions MSol .

Remarque : toutes ? les galaxies recéleraient un trou noir massif, notre Voie Lactée, pour sa part, en contiendrait un de 2,6 millions MSol .

à  la  différence d’une radiogalaxie qui émet à partir d’une région très étendue, le quasar  rayonne  à  partir d’une région considérablement plus

image16

Quasar 3C273    

 faible, typiquement 1 million de fois plus petite en diamètre. Il apparaît aussi  des centaines de fois plus brillant que la plus brillante des galaxies et, de plus, il se situe aux confins de l’Univers, souvent à plusieurs milliards d’années lumière.  C’est dire qu’il  doit disposer d’une puissance gigantesque.

Les premiers quasars ont été découverts au  début des années 60 et les astronomes les prirent pour des étoiles d’origine inconnue. C’est pour cette raison qu’ils furent baptisés QUASAR, une abréviation de QUAsiStellAR.

La seule explication du « moteur hyper énergétique » qui les alimente, est  de faire appel à un trou noir massif qui transforme donc l’énergie de la

matière qu’il engloutit en énergie radiative. Le mécanisme est probablement  commun aux radiogalaxies et aux quasars.

 

Le quasar 3C273, ci-dessus, situé, dans la constellation de la Vierge est le plus brillant de notre ciel. Sa luminosité est 1 million de million de fois celle du  Soleil ou 100 fois celle d’une galaxie géante comme la Voie Lactée. Il est éloigné de 2,4 milliards d’années lumière et la masse du trou noir qu’il abrite  est  de l’ordre de 1 milliard de MSol.

Des paris à propos des trous noirs         

Objets fascinants, aux propriétés étonnantes, les trous noirs nous entrainent vers un monde de l’étrange régi par une physique de l’extrême que nous ne maitrisons pas encore. Une sorte de vertige nous saisit à l’idée de ces forces titanesques et de ces singularités où l’infini se confond avec le néant, où tout semble disparaître.

Certainement sensibles à ces impressions, peut être aussi au doute qui peut naitre de leurs   spéculations, parfois aussi en désaccord entre eux, les acteurs de ces travaux se sont quelque fois lancés des défis sous forme de paris. En voici quelques uns :

 

w Pari entre Stephen Hawking et Kip Thorne - 1974

Objet :   Cygnus 1 est- il un trou noir?

Pour :    K.T.

Contre : S.H.

Enjeu :   un abonnement d’un an à la revue «  Penthouse » si K.T. gagne

             un  abonnement de 4 ans à «  Private eye » en cas de victoire de S.H.

S. H. a finalement perdu son pari.

 w Pari entre Stephen Hawking , John Preskill et Kip Thorne - 1991

Objet  : la conjecture de la censure cosmique est-elle correcte?

Pour   : S.H.

Contre : J.P. et K.T.

Enjeu : le perdant récompensera le gagnant par un vêtement couvrant sa « nudité »

Le pari tient toujours.

w Pari entre Stephen Hawking et John Preskill - 1997   

Objet : l’information contenue dans un trou noir qui s’évapore, n’est pas perdue

Pour  :  J.P.

Contre : S.H.

Enjeu : une encyclopédie du base-ball

En 2004, S. H. estimera avoir perdu la partie.